
XCP-ng is using Open vSwitch as its core, and supports various features from it.

Networking
�� Making MTU 9000 Persistent on XCP-ng (OVS)

Networking

XCP-ng is using Open vSwitch as its core, and supports various features from it.

This section describes the general concepts of networking in XCP-ng.

XCP-ng creates a network for each physical NIC during installation. When you add a server to a
pool, the default networks are merged. This is meant to be sure that all physical NICs with the
same device name are attached to the same network, authorizing seamless VM flexibility on any
host of the pool.

Typically, you add a network to create a new external network (bridge), set up a new VLAN using
an existing NIC, or create a NIC bond.

You can configure four different types of networks in XCP-ng:

Default Networks have an association with a physical network interface. Those are also
called "External networks" provide a bridge between a virtual machine and the physical
network interface connected to the network. External networks enable a virtual machine
to connect to resources available through the server’s physical NIC.
Bonded networks create a bond between two or more NICs to create a single, high-
performing channel between the virtual machine and the network.
Global Private Networks extend the single server private network concept to allow VMs on
different pools and/or hosts to communicate with each other by using the XOA SDN
controller.

This section uses three types of server-side software objects to represent networking entities.
These objects are:

Networking

Tip :
Even if one NIC can be enough for your host, having a dedicated NIC for storage will be
really important to get consistent performances (especially if you use shared storage like
iSCSI or NFS).

#Concepts

#Network objects

https://xcp-ng.org/docs/networking.html#concepts
https://xcp-ng.org/docs/networking.html#network-objects

A PIF, which represents a physical NIC on a host. PIF objects have a name and description,
a UUID, the parameters of the NIC they represent, and the network and server they are
connected to.
A VIF, which represents a virtual NIC on a virtual machine. VIF objects have a name and
description, a UUID, and the network and VM they are connected to.
A network, which is a virtual Ethernet switch on a host. Network objects have a name and
description, a UUID, and the collection of VIFs and PIFs connected to them.

xe CLI, Xen Orchestra or XCP-ng center allow you to configure networking options. You can control
the NIC used for management operations, and create advanced networking features such as VLANs
and NIC bonds.

Each XCP-ng server has one or more networks, which are virtual Ethernet switches. Networks that
are not associated with a PIF are considered internal. Internal networks can be used to provide
connectivity only between VMs on a given XCP-ng server, with no connection to the outside world.
Networks associated with a PIF are considered external. External networks provide a bridge
between VIFs and the PIF connected to the network, enabling connectivity to resources available
through the PIF’s NIC.

VLANs, as defined by the IEEE 802.1Q standard, allow a single physical network to support multiple
logical networks. XCP-ng hosts support VLANs in multiple ways.

Switch ports configured as 802.1Q VLAN trunk ports can be used with XCP-ng VLAN features to
connect guest virtual network interfaces (VIFs) to specific VLANs. In this case, XCP-ng server
performs the VLAN tagging/untagging functions for the guest, which is unaware of any VLAN
configuration.

XCP-ng VLANs are represented by additional PIF objects representing VLAN interfaces
corresponding to a specified VLAN tag. You can connect XCP-ng networks to the PIF representing
the physical NIC to see all traffic on the NIC. Alternatively, connect networks to a PIF representing a
VLAN to see only the traffic with the specified VLAN tag. You can also connect a network such that
it only sees the native VLAN traffic, by attaching it to VLAN 0.

To use VLANs for your network logical isolation, it's really easy. You'll create a new network with a
VLAN ID, and all virtual interfaces created on this network will transparently have traffic tagged in

#Networks

#VLANs

#VLANs for VMs

https://xcp-ng.org/docs/networking.html#networks
https://xcp-ng.org/docs/networking.html#vlans
https://xcp-ng.org/docs/networking.html#vlans-for-vms

this VLAN. No need to configure anything inside your VM.

First step, go in Xen Orchestra menu, "New" then "Network":

Then, select a pool where you want to create this network, and fill what's required, like physical
interface selection, name and description and also VLAN number:

Finally, click on "Create network":

That's it!

It's same as previous section, just check the "Bonded Network" and select multiple PIFs in the
Interface selector. You can either use VLANs or not, it doesn't matter!

After physically installing a new NIC, you'll need to run a xe pif-scan command on the host to get
this NIC added as an available PIF. xe pif-scan host-uuid=<HOST UUID> Check new NIC by UUID: xe
pif-list Plug new NIC: xe pif-plug uuid=<NIC UUID>

#Bonds

#Manage physical NICs

#Add a new NIC

#Renaming NICs

https://xcp-ng.org/docs/networking.html#bonds
https://xcp-ng.org/docs/networking.html#manage-physical-nics
https://xcp-ng.org/docs/networking.html#add-a-new-nic
https://xcp-ng.org/docs/networking.html#renaming-nics

In a pool, all NICs across your hosts should match up exactly. So if your management is NIC 0 and
your 10Gbit storage interface is NIC 4 on host 1, it should be the same on host 2.

If for some reason the NIC order between hosts doesn't match up, you can fix it with the interface-
rename command.

This will display all available options.

This will display the current interface mapping/assignments.

Interfaces you wish to rename need to be downed first:

The most common use will be an update statement like the following:

This example will set the mac-address for eth4 & eth8, switching them in the process.

The XAPI database needs the old PIFs removed. First list your PIFs for the affected NICs:

Reboot the host to apply these settings.

The interfaces by their new names need to be re-enabled:

The new interfaces need to be introduced to the PIF database:

TIP
These commands are meant to be done on non-active interfaces. Typically this will be done
directly after install, before even joining a pool.

interface-rename --help

interface-rename --list

ifconfig eth4 down

ifconfig eth8 down

interface-rename --update eth4=00:24:81:80:19:63 eth8=00:24:81:7f:cf:8b

xe pif-list

xe pif-forget uuid=<uuid of eth4>

xe pif-forget uuid=<uuid of eth8>

ifconfig eth4 up

ifconfig eth8 up

Make note of the host uuid. Then introduce the interfaces:

By renaming/updating interfaces like this, you can assure all your hosts have the same interface
order.

Before removing it, just be sure to remove its associated networks, so it won't cause trouble. Then,
shutdown, remove the NIC and finally boot. After the boot, do a xe pif-forget uuid=<OLD PIF UUID>
 to get rid of the object record.

An SDN controller is provided by a Xen Orchestra plugin. Thanks to that, you can enjoy advanced
network features.

Private network (using tunnels) are very handy when you want to access resources in a secure
manner, that are not in the same physical network.

So we want a network that is:

reachable by all the hosts in a pool or even between different pools!
unreachable by anything outside the network
reactive when the pool changes (new host, host ejected, PIF unplugged etc):

That's exactly what you can have thanks to XO SDN controller (here via GRE tunnels):

To create a private network, go in Xen Orchestra, New/Network and select "Private Network":

xe host-list

xe pif-introduce device=eth4 host-uuid=<host uuid> mac=<mac>

xe pif-introduce device=eth8 host-uuid=<host uuid> mac=<mac>

#Remove a physical NIC

#SDN controller

#GRE/VXLAN tunnels

https://xcp-ng.org/docs/management.html#xen-orchestra
https://xcp-ng.org/docs/networking.html#remove-a-physical-nic
https://xcp-ng.org/docs/networking.html#sdn-controller
https://xcp-ng.org/docs/networking.html#gre-vxlan-tunnels

To be able to encrypt the networks, openvswitch-ipsec package must be installed on all the hosts:

yum install openvswitch-ipsec --enablerepo=xcp-ng-testing

systemctl enable ipsec

systemctl enable openvswitch-ipsec

systemctl start ipsec

systemctl start openvswitch-ipsec

More information available on XO official documentation for SDN controller (opens new window).

The error would look like this:

It means the TLS certificate, used to identify a SDN controller, on the host doesn't match the one of
the plugin, to solve it:

unload the SDN Controller plugin
in plugin config, set override-certs option to on (it will allow the plugin to uninstall the
existing certificate before installing its own)
load the plugin

The issue should be fixed.

#Encryption

#OpenFlow rules

TIP
This feature is coming very soon!

#Common errors

#TLS connection issue

Client network socket disconnected before secure TLS connection was
established“

https://xen-orchestra.com/docs/sdn_controller.html
https://xcp-ng.org/docs/networking.html#encryption
https://xcp-ng.org/docs/networking.html#openflow-rules
https://xcp-ng.org/docs/networking.html#common-errors
https://xcp-ng.org/docs/networking.html#tls-connection-issue

Sometimes you need to add extra routes to an XCP-ng host. It can be done manually with an ip
route add 10.88.0.0/14 via 10.88.113.193 (for example). But it won't persist after a reboot.

To properly create persistent static routes, first create your xen network interface as usual. If you
already have this network created previously, just get its UUID with an xe network-list . You're
looking for the interface you have a management IP on typically, something like xapi0 or xapi1 for
example. If you're not sure which one it is, you can run ifconfig and find the interface name that
has the IP address this static route traffic will be exiting. Then get that interfaces UUID using the
previous xe network-list command.

Now insert the UUID in the below example command. Also change the IPs to what you need, using
the following format: <network>/<netmask>/gateway IP> . For example, our previous ip route add
10.88.0.0/14 via 10.88.113.193 will be translated into:

You can check the result with a route -n afterwards to see if the route is now present. If you must
add multiple static routes, it must be in one command, and the routes separated by commas. For
example, to add both 10.88.0.0/14 via 10.88.113.193 and 10.0.0.0/24 via 192.168.1.1, you would
use this:

To remove static routes you have added, stick the same network UUID from before in the below
command:

A toolstack restart is needed as before.

TIP

#Static routes

xe network-param-set uuid=<network UUID> other-config:static-routes=10.88.0.0/14/10.88.113.193

TIP
You must restart the toolstack on the host for the new route to be added!

xe network-param-set uuid=<network UUID> other-config:static-

routes=10.88.0.0/14/10.88.113.193,10.0.0.0/24/192.168.1.1

#Removing static routes

xe network-param-remove uuid=<network UUID> param-key=static-routes param-name=other-config

https://xcp-ng.org/docs/networking.html#static-routes
https://xcp-ng.org/docs/networking.html#removing-static-routes

XAPI might not remove the already-installed route until the host is rebooted. If you need to remove
it ASAP, you can use ip route del 10.88.0.0/14 via 10.88.113.193 . Check that it's gone with route
-n .

This page describes how to configure a three node meshed network (see Wikipedia (opens new
window)) which is a very cheap approach to create a 3 node HA cluster, that can be used to host a
Ceph cluster, or similar clustered solutions that require 3 nodes in order to operate with full high-
availability.

Meshed network requires no physical network switches, the 3 physical nodes are interlinked with
each other using multiple network interfaces.

Example with 3 nodes that each has 3 NIC, 1 is for WAN connection and 2 are used to interlink with
remaining 2 nodes:

Meshed network example

SSH to dom0

#Full mesh network

WARNING
Right now only known-to-work option is to use bridge network backend, but hopefully in
future it should be possible to setup meshed network using Open vSwitch as well (should
you know how, please update this wiki)

#Using bridge backend

WARNING
These steps will require reboot of all 3 nodes multiple times. They will also require you to
use bridge network backend instead of Open vSwitch, which will result in loss of some
functionality and is not commercially supported

#Switch to bridge mode on all nodes

on dom0 on each hypervisor as root user

xe-switch-network-backend bridge

reboot the hypervisor

reboot

https://en.wikipedia.org/wiki/Mesh_networking
https://en.wikipedia.org/wiki/Mesh_networking
https://xcp-ng.org/docs/networking.html#full-mesh-network
https://xcp-ng.org/docs/networking.html#using-bridge-backend
https://xcp-ng.org/docs/networking.html#switch-to-bridge-mode-on-all-nodes

In XCP-ng Center go to NICs tab and create a bond, selecting eth1 and eth2 as bond devices, leave
all options as default

Again, ssh to dom0 on all nodes and execute

#Create a bond on all nodes

#Reconfigure the bond device to broadcast mode

xe pif-list

Example output

uuid (RO) : f1580a37-6726-6479-d399-635e2cb719b6

 device (RO): eth2

 currently-attached (RO): false

 VLAN (RO): -1

 network-uuid (RO): b33187c0-b231-0c69-6ee9-3ad2dcefa6f8

uuid (RO) : 63abf866-890d-79bb-d276-8a50e8e4a94b

 device (RO): eth0

 currently-attached (RO): true

 VLAN (RO): -1

 network-uuid (RO): 7404e9f7-7dfe-b666-d6f2-1fe9886498cd

uuid (RO) : 77826c83-4b60-8137-c00f-3027d89b86b2

 device (RO): eth1

 currently-attached (RO): false

 VLAN (RO): -1

 network-uuid (RO): ae9847e4-5587-2e61-4870-365143837aba

uuid (RO) : 65380308-0c53-3d96-f564-06a724a792be

 device (RO): bond0

 currently-attached (RO): true

 VLAN (RO): -1

 network-uuid (RO): b7e4d20b-64ed-bf38-c56f-4d740b579005

Replace the UUID with the bond ID and execute following command

xe pif-param-set uuid=65380308-0c53-3d96-f564-06a724a792be other-config:bond-mode=broadcast

https://xcp-ng.org/docs/networking.html#create-a-bond-on-all-nodes
https://xcp-ng.org/docs/networking.html#reconfigure-the-bond-device-to-broadcast-mode

Go to tab Networking, rename bond1+2 device to something more memorable such as "MeshLAN",
then add IP to all dom0 VMs to test it out, click "Configure" in IP configuration, add IP address and
insert following addresses (you can use different addresses and range if you prefer to):

On each node respectively

192.168.10.1
192.168.10.2
192.168.10.3

Netmask: 255.255.255.0 Gateway: leave empty

Now SSH to each dom0 and try if you can ping all 3 IP addresses. If you can, you successfully
created a meshed network. This network is going to provide interconnection between all 3 nodes
and even if some node die, connectivity between remaining 2 nodes will remain operational.

This setup will save you costs of 2 network switches you would otherwise have to purchase and use
instead to achieve HA connectivity.

When XCP-ng is configured for static IP configuration there are no DNS search domains added. It is
possible to add search domains into /etc/resolv.conf , however those won't persist across reboots.
Use xe pif-param-set to add search domains that should persist across reboots.

reboot

#Configure the interface in XCP-ng center

#References
Forum post: https://xcp-ng.org/forum/topic/1897/mesh-network(opens new
window)

Proxmox wiki:
https://pve.proxmox.com/wiki/Full_Mesh_Network_for_Ceph_Server(opens new
window)

“

#DNS Search Domains

https://xcp-ng.org/docs/networking.html#configure-the-interface-in-xcp-ng-center
https://xcp-ng.org/docs/networking.html#references
https://xcp-ng.org/forum/topic/1897/mesh-network
https://xcp-ng.org/forum/topic/1897/mesh-network
https://pve.proxmox.com/wiki/Full_Mesh_Network_for_Ceph_Server
https://pve.proxmox.com/wiki/Full_Mesh_Network_for_Ceph_Server
https://xcp-ng.org/docs/networking.html#dns-search-domains

First identify the PIF used as management interface.

Take note of the uuid field and pass that to xe pif-param-set

This procedure has to be done for all hosts in the same pool.

Disabling TX offload might help to diagnose NIC issues:

If you are using bonds on FCoE capable devices, it's preferable to disable it entirely:

xe pif-list host-name-label=xcpng-srv01 management=true

uuid (RO) : 76608ca2-e099-9344-af36-5b63c0022913

 device (RO): bond0

 currently-attached (RO): true

 VLAN (RO): -1

 network-uuid (RO): cc966455-d5f8-0257-04a7-d3d7c671636b

xe pif-param-set uuid=76608ca2-e099-9344-af36-5b63c0022913 other-

config:domain=searchdomain1.com,searchdomain2.com,searchdomain3.com

#Network Troubleshooting

#Network corruption

xe pif-param-set uuid=<PIF UUID> other-config:ethtool-tx=off

#Disabling FCoE

systemctl stop fcoe

systemctl stop xs-fcoe

systemctl disable fcoe

systemctl disable xs-fcoe

https://xcp-ng.org/docs/networking.html#network-troubleshooting
https://xcp-ng.org/docs/networking.html#network-corruption
https://xcp-ng.org/docs/networking.html#disabling-fcoe

See https://github.com/xcp-ng/xcp/issues/138 (opens new window).

Incorrect networking settings can cause loss of network connectivity. When there is no network
connectivity, XCP-ng host can become inaccessible through Xen Orchestra or remote SSH.
Emergency Network Reset provides a simple mechanism to recover and reset a host’s networking.

The Emergency network reset feature is available from the CLI using the xe-reset-networking
 command, and within the Network and Management Interface section of xsconsole.

Incorrect settings that cause a loss of network connectivity include renaming network interfaces,
creating bonds or VLANs, or mistakes when changing the management interface. For example,
typing the wrong IP address. You may also want to run this utility in the following scenarios:

Use the xe-reset-networking utility only in an emergency because it deletes the configuration for
all PIFs, bonds, VLANs, and tunnels associated with the host. Guest Networks and VIFs are
preserved. As part of this utility, VMs are shut down forcefully. Before running this command,
cleanly shut down the VMs where possible. Before you apply a reset, you can change the
management interface and specify which IP configuration, DHCP, or Static can be used.

If the pool master requires a network reset, reset the network on the pool master first before
applying a network reset on pool members. Apply the network reset on all remaining hosts in the
pool to ensure that the pool’s networking configuration is homogeneous. Network homogeneity is
an important factor for live migration.

#Emergency Network Reset

WARNING
If a Pool master or host in a resource pool is unable to contact with other hosts.

TIP

If the pool master’s IP address (the management interface) changes as
a result of a network reset or xe host-management-reconfigure, apply
the network reset command to other hosts in the pool. This is to ensure
that the pool members can reconnect to the Pool Master on its new IP
address. In this situation, the IP address of the Pool Master must be
specified.
Network reset is NOT supported when High Availability is enabled. To
reset network configuration in this scenario, you must first manually
disable high availability, and then run the network reset command.

“

https://github.com/xcp-ng/xcp/issues/138
https://xcp-ng.org/docs/networking.html#emergency-network-reset

After you specify the configuration mode to be used after the network reset, xsconsole and the CLI
display settings that will be applied after host reboot. It is a final chance to modify before applying
the emergency network reset command. After restart, the new network configuration can be
verified in Xen Orchestra and xsconsole. In Xen Orchestra, with the host selected, select the
Networking tab to see the new network configuration. The Network and Management Interface
section in xsconsole display this information.

TO have SR-IOV enabled, you need:

SR-IOV / ASPM compatible mainboard
SR-IOV compatible CPU
SR-IOV compatible network card
SR-IOV compatible drivers for XCP-ng

enable SR-IOV in your BIOS
enable ASPM (seem to be needed acording to
https://www.juniper.net/documentation/en_US/contrail3.1/topics/concept/sriov-with-
vrouter-vnc.html and https://www.supermicro.com/support/faqs/faq.cfm?faq=26448)
enable SR-IOV in your network card firmware

Then, you can enable and configure it with xe CLI:

The last command will tell you if you need to reboot or not.

Assign the SR-IOV network to your VM:

#Verifying the network reset

#SR-IOV

WARNING
You can't live migrate a VM with SR-IOV enabled. Use it only if you really need it!

#Setup

xe network-create name-label=SRIOV

xe network-sriov-create network-uuid=<network_uuid> pif-uuid=<physical_pif_uuid>

xe network-sriov-param-list uuid=<SR-IOV Network_uuid>

xe vif-create device=<device index> mac=<vf_mac_address> network-uuid=<sriov_network> vm-

uuid=<vm_uuid>

https://xcp-ng.org/docs/networking.html#verifying-the-network-reset
https://xcp-ng.org/docs/networking.html#sr-iov
https://xcp-ng.org/docs/networking.html#setup

If you want to disable it:

With kernel version 4.15 a fix in the e1000e driver has been introduced (opens new window).
However, this fix slightly slows down DMA access times to prevent the NIC to hang up on heavy
UDP traffic. This impacts the TCP performance. A workaround to regain full transfer speeds, you
can turn off TCP segmentation offloading via the following command:

There is currently no fix available / announced that allows offloading TCP segmentation to the NIC
without sacrificing performance.

xe network-sriov-destroy uuid=<network_sriov_uuid>

TIP
You can read a Citrix guide here: https://support.citrix.com/article/CTX235044(opens new
window)

#Intel i218/i219 slow speed

ethtool -K <interface> tso off gso off

TIP
The following error message can be ignored: Cannot get device udp-fragmentation-offload
settings: Operation not supported

https://github.com/torvalds/linux/commit/b10effb92e272051dd1ec0d7be56bf9ca85ab927
https://support.citrix.com/article/CTX235044
https://support.citrix.com/article/CTX235044
https://xcp-ng.org/docs/networking.html#intel-i218-i219-slow-speed

Title: Making MTU 9000 Persistent on XCP-ng (OVS)

Author: MSLS Partners LLC

Last Updated: April 2025

Description: This guide explains how to configure MTU 9000 for Open vSwitch (OVS) inside XCP-
ng environments. It ensures that jumbo frames remain active and survive reboots, greatly
improving network performance for storage and virtual machines.

Difficulty Level: Intermediate ��️

Estimated Time: 15–20 minutes

Purpose
Requirements
Background
Steps

�� Step 1: Create the MTU Fix Bash Script
�� Step 2: Create the systemd Service
�� Step 3: Enable the Service
�� Step 4: Validate

Expected Results
Troubleshooting
Bonus: Quick MTU Validation Script

? Making MTU 9000 Persistent
on XCP-ng (OVS)

? Guide Overview

? Table of Contents

Final Notes

This guide explains how to correctly configure MTU 9000 on Open vSwitch (OVS) inside XCP-ng
to ensure jumbo frames survive across reboots.

XCP-ng 8.x or newer
Open vSwitch in use (default in XCP-ng)
SSH access to the hypervisor
Root privileges

XCP-ng uses Open vSwitch (OVS) to manage VM networking.
Setting MTU at the Linux NIC level is not enough; OVS controls the real MTU behavior.
XCP-ng resets network bridges at boot, so MTU settings must be reapplied
automatically.

Paste this:

? Purpose

? Requirements

? Background

? Steps

? Step 1: Create the MTU Fix Bash Script
sudo nano /usr/local/bin/fix-ovs-mtu.sh

#!/bin/bash

sleep 20

ovs-vsctl set interface eth4 mtu_request=9000

ovs-vsctl set interface xenbr4 mtu_request=9000

echo "$(date) - MTU 9000 applied to eth4 and xenbr4" >> /var/log/fix-ovs-mtu.log

Make it executable:

Paste this:

Check service status:

Check MTU settings:

sudo chmod +x /usr/local/bin/fix-ovs-mtu.sh

? Step 2: Create the systemd Service
sudo nano /etc/systemd/system/fix-ovs-mtu.service

[Unit]

Description=Fix OVS Interfaces MTU to 9000 After Boot

After=network-online.target openvswitch-switch.service

[Service]

ExecStart=/usr/local/bin/fix-ovs-mtu.sh

Type=oneshot

RemainAfterExit=yes

[Install]

WantedBy=multi-user.target

? Step 3: Enable the Service
sudo systemctl daemon-reload

sudo systemctl enable fix-ovs-mtu.service

sudo systemctl start fix-ovs-mtu.service

sudo systemctl status fix-ovs-mtu.service

? Step 4: Validate

sudo systemctl status fix-ovs-mtu.service

ip link show eth4

ip link show xenbr4

Verify inside OVS:

eth4 MTU = 9000
xenbr4 MTU = 9000
VMs' VIFs inherit MTU 9000
Jumbo frames supported end-to-end
Performance improvement (storage, VM transfers)

Symptom Likely Cause Solution

MTU resets to 1500 after reboot Systemd service not enabled Check service status

Ping fragmentation on large packets Switch ports not configured for MTU
9000

Enable jumbo frames on switch ports

iperf3 speed low MTU not properly set at all layers Double-check NIC, bridge, VM, and
switch

Always verify MTU from storage to VM.
Setting mtu_request inside OVS and a systemd fix ensures full persistence.

ovs-vsctl list interface eth4 | grep mtu

ovs-vsctl list interface xenbr4 | grep mtu

? Expected Results

? Troubleshooting

? Bonus: Quick MTU Validation Script
#!/bin/bash

echo "Checking eth4:"

ip link show eth4 | grep mtu

echo "Checking xenbr4:"

ip link show xenbr4 | grep mtu

echo "Checking VMs VIFs:"

ip link | grep vif | grep mtu

? Final Notes

Better performance, lower CPU usage for 10GbE network operations.

Create the MTU fix script at /usr/local/bin/fix-ovs-mtu.sh
Make the script executable
Create the systemd service at /etc/systemd/system/fix-ovs-mtu.service
Reload systemd
Enable and start the service
Verify MTU settings on eth4 and xenbr4 after boot
Validate VMs inherit MTU 9000
Test with iperf3 and ping -M do -s 8972

Created and maintained by MSLS Partners LLC ��

Empowering IT with clear documentation and professional best practices.

Version 1.0 | Last Reviewed: April 2025

? Quick Steps Checklist

