
image.png

In this Article we want you to be able to deploy secure apps with containers in the cloud space. This
deployment is useful for deploying apps or services without the need of a separate Firewall on
prem or the cloud to secure and encrypt the communication. Another benefits of this design is, that
the user's never interact with the actual server.

Domain or be able to create sub-domains (cloud-npm.your_domain.tld, cloud-
portainer.your_domain.tld, any_app_conatainer.your_domain.tld)
Ability to open ports 80,81,443 on the firewall or VPS
Ubuntu Linux VM (with the necessary resources to run your containers)

Deploy Docker Containers on
the Cloud

Objective:

Pre-Requisites:

This guide will not show you how to create a VM, open the necessary ports on your VPS (80,
81, 443), or create the necessary DNS records on your Public DNS Server or Domain
Registrar.

Understanding the Design:

https://wiki.towne.org/uploads/images/gallery/2023-10/zcuimage.png

The above shows how we intend the communication to work. In this design, you will always use
Nginx Proxy manager (NPM), and to manage docker from a web-ui we are going to use Portainer.
We will expose to the public port 80 TCP and port 443 TCP. We will also open temporarily port 81
TCP for NPM's initial setup / management.

Docker provides a convenience script at https://get.docker.com/open_in_new to install Docker into
development environments non-interactively. The convenience script isn't recommended for
production environments, but it's useful for creating a provisioning script tailored to your needs.
Also refer to the install using the repository steps to learn about installation steps to install using
the package repository. The source code for the script is open source, and you can find it in the
docker-install repository on GitHubopen_in_new.

Always examine scripts downloaded from the internet before running them locally. Before
installing, make yourself familiar with potential risks and limitations of the convenience script:

The script requires root or sudo privileges to run.
The script attempts to detect your Linux distribution and version and configure your
package management system for you.
The script doesn't allow you to customize most installation parameters.
The script installs dependencies and recommendations without asking for confirmation.
This may install a large number of packages, depending on the current configuration of
your host machine.
By default, the script installs the latest stable release of Docker, containerd, and runc.
When using this script to provision a machine, this may result in unexpected major
version upgrades of Docker. Always test upgrades in a test environment before deploying
to your production systems.
The script isn't designed to upgrade an existing Docker installation. When using the script
to update an existing installation, dependencies may not be updated to the expected
version, resulting in outdated versions.

Install Docker using the convenience
script

Tip: preview script steps before running
You can run the script with the --dry-run option to learn what steps the script
will run when invoked:

“

https://get.docker.com/
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://github.com/docker/docker-install

This example downloads the script from https://get.docker.com/open_in_new and runs it to install
the latest stable release of Docker on Linux:

content_copy

These optional post-installation procedures describe how to configure your Linux host machine to
work better with Docker.

The Docker daemon binds to a Unix socket, not a TCP port. By default it's the root user that owns
the Unix socket, and other users can only access it using sudo . The Docker daemon always runs as
the root user.

If you don't want to preface the docker command with sudo , create a Unix group called docker
 and add users to it. When the Docker daemon starts, it creates a Unix socket accessible by
members of the docker group. On some Linux distributions, the system automatically creates this
group when installing Docker Engine using a package manager. In that case, there is no need for
you to manually create the group.

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh ./get-docker.sh --dry-run

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

Executing docker install script, commit: 7cae5f8b0decc17d6571f9f52eb840fbc13b2737

<...>

Linux post-installation steps for Docker Engine

Manage Docker as a non-root user

Warning
The docker group grants root-level privileges to the user. For details on how this impacts
security in your system, see Docker Daemon Attack Surface.

Note To run Docker without root privileges, see Run the Docker daemon as a non-root user
(Rootless mode).

https://get.docker.com/
https://docs.docker.com/engine/security/#docker-daemon-attack-surface
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/

To create the docker group and add your user:

1. Create the docker group.

sudo groupadd docker

2. Add your user to the docker group.

sudo usermod -aG docker $USER

3. Log out and log back in so that your group membership is re-evaluated.

You can also run the following command to activate the changes to groups:

If you're running Linux in a virtual machine, it may be necessary to restart the
virtual machine for changes to take effect.

newgrp docker

4. Verify that you can run docker commands without sudo .

This command downloads a test image and runs it in a container. When the container
runs, it prints a message and exits.
If you initially ran Docker CLI commands using sudo before adding your user to the
docker group, you may see the following error:

This error indicates that the permission settings for the ~/.docker/ directory are incorrect,
due to having used the sudo command earlier.
To fix this problem, either remove the ~/.docker/ directory (it's recreated automatically,
but any custom settings are lost), or change its ownership and permissions using the
following commands:

docker run hello-world

WARNING: Error loading config file: /home/user/.docker/config.json -

stat /home/user/.docker/config.json: permission denied

sudo chown "$USER":"$USER" /home/"$USER"/.docker -R

sudo chmod g+rwx "$HOME/.docker" -R

Many modern Linux distributions use systemd to manage which services start when the system
boots. On Debian and Ubuntu, the Docker service starts on boot by default. To automatically start
Docker and containerd on boot for other Linux distributions using systemd, run the following
commands:

Configure Docker to start on boot with systemd

https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/engine/install/linux-postinstall/#configure-docker-to-start-on-boot-with-systemd

To stop this behavior, use disable instead.

If you need to add an HTTP proxy, set a different directory or partition for the Docker runtime files,
or make other customizations, see customize your systemd Docker daemon options.

On this page you can find instructions on how to install Compose standalone on Linux or Windows
Server, from the command line.

1. To download and install Compose standalone, run:

sudo systemctl enable docker.service

sudo systemctl enable containerd.service

sudo systemctl disable docker.service

sudo systemctl disable containerd.service

Install Docker-Compose standalone

Important
From July 2023 Compose V1 stopped receiving updates. It's also no longer available in new
releases of Docker Desktop.

Compose V2 is included with all currently supported versions of Docker Desktop. For more
information, see Migrate to Compose V2.
Docker's documentation refers to and describes Compose V2 functionality.

On Linux

Compose standalone
Note that Compose standalone uses the -compose syntax instead of the current standard
syntax compose .
For example type docker-compose up when using Compose standalone, instead of docker
compose up .

curl -SL https://github.com/docker/compose/releases/download/v2.23.0/docker-compose-linux-

x86_64 -o /usr/local/bin/docker-compose

https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/compose/migrate

2. Apply executable permissions to the standalone binary in the target path for the
installation.

3. Test and execute compose commands using docker-compose .

Tip
If the command docker-compose fails after installation, check your path.
You can also create a symbolic link to /usr/bin or any other directory
in your path. For example:

“

sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

I’m going to demonstrate how to create a bridge network and then show you how to deploy a
container on that network. We’ll create a network called net-to-proxy. The creation of this network
can be achieved with a single command:

The output of that command will be a long string of characters that represents the ID of that newly-
created network

Because we will be deploying Three Stacks with docker-compose, we will need to keep our files
organized. We are going to use the "mkdir" command to create our directories for the containers
in the "home" folder of the current user.

The plan is to have a "docker-compose.yml" file for each stack in their own folders.

Creating a new Docker Network

docker network create --driver bridge net-to-proxy

Organization:

mkdir ./npm && mkdir ./portainer && mkdir ./bookstack

Prepare Deployment of Portainer

Portainer has a few dependencies that must be supplied when you start your container:

It requires a volume to store persistent data.
Your host’s Docker socket should be mounted into the container so that Portainer can
access and interact with the Docker daemon.
You need to bind a port to the container so you can access the web UI.

Change to the Portainer directory we created ~/portainer . Create a file called "docker-
compose.yml". This lets you write the container’s configuration into a file so you can bring up the
app with a single command.

Portainer-Docker-Compose.yml

version: "3"

services:

 portainer:

 image: portainer/portainer-ce:latest

 ports:

 - 9443:9443

 volumes:

 - data:/data

 - /var/run/docker.sock:/var/run/docker.sock

 restart: unless-stopped

 networks:

 - portainer_net

 - net-to-proxy

volumes:

 data: ./poertainer_data

networks:

 portainer_net:

 driver: bridge # This means that, this network is using the host bridge

 net-to-proxy:

 external: true # This means that, this network was created previously and is external

Here, the image field is set to portainer/portainer-ce:latest to use the latest Portainer CE release
from Docker Hub. Change this to portainer/portainer-ee:latest if you’ve purchased an Enterprise
Edition license.

The ports field sets up a port binding from your host to the container. You’ll be able to access the
Portainer UI by visiting https://localhost:9443 . Portainer provides a self-signed HTTPS certificate,

https://earthly.dev/blog/what-is-buildkit-and-what-can-i-do-with-it

which you can override by mounting your own into the container.

The volumes field sets up a data volume that’s mounted to /data inside the container. Portainer
will write your settings to this location, allowing them to persist after the container restarts. The
host’s Docker socket, /var/run/docker.sock , is bind mounted straight into the container so
Portainer can manage the Docker installation it’s running within.

The Networks field, maps out the networks the container will have. There are other ways to add a
network to a stack, in this case we used this way to ensure connectivity after reboots.

Finally, the restart field is set to unless-stopped , so Docker automatically starts Portainer after the
host reboots unless you manually stop the container first.

Now you can use this Compose file to bring up Portainer:

The docker images support the following architectures:

amd64
arm64
armv7

The docker images are a manifest of all the architecture docker builds supported, so this means
you don't have to worry about doing anything special and you can follow the common instructions
above.

Check out the dockerhub tags for a list of supported architectures and if you want one that doesn't
exist, create a feature request.

Also, if you don't know how to already, follow this guide to install docker and docker-compose on
Raspbian.

Please DO NOT RUN THE COMMAND BELOW- yet

docker compose up -d

NGINX Proxy Manager Deployment

Compatilibility

https://docs.portainer.io/advanced/ssl#using-your-own-ssl-certificate-on-docker-standalone
https://docs.docker.com/storage/bind-mounts
https://hub.docker.com/r/jc21/nginx-proxy-manager/tags
https://github.com/NginxProxyManager/nginx-proxy-manager/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://manre-universe.net/how-to-run-docker-and-docker-compose-on-raspbian/

Please note that the jc21/mariadb-aria:latest image might have some problems on some ARM
devices, if you want a separate database container, use the yobasystems/alpine-mariadb:latest
image.

Navigate to ~/npm and create a docker-compose.yml file:

NGINX-Docker-Compose.yml

version: '3.8'

services:

 app:

 image: 'jc21/nginx-proxy-manager:latest'

 restart: unless-stopped

 ports:

 # These ports are in format <host-port>:<container-port>

 - '80:80' # Public HTTP Port

 - '443:443' # Public HTTPS Port

 - '81:81' # Admin Web Port

 # Add any other Stream port you want to expose

 # - '21:21' # FTP

 environment:

 # Mysql/Maria connection parameters:

 DB_MYSQL_HOST: "db"

 DB_MYSQL_PORT: 3306

 DB_MYSQL_USER: "npm"

 DB_MYSQL_PASSWORD: "npm" #change this line

 DB_MYSQL_NAME: "npm"

 # Uncomment this if IPv6 is not enabled on your host

 # DISABLE_IPV6: 'true'

 volumes:

 - ./data:/data

 - ./letsencrypt:/etc/letsencrypt

 depends_on:

 - db

 networks:

 - net-to-proxy

 - npm_default

 db:

 image: 'jc21/mariadb-aria:latest'

 restart: unless-stopped

 environment:

 MYSQL_ROOT_PASSWORD: 'npm' #change this line

 MYSQL_DATABASE: 'npm'

 MYSQL_USER: 'npm'

 MYSQL_PASSWORD: 'npm' # change this line

 volumes:

 - ./mysql:/var/lib/mysql

 networks:

 - npm_default

networks:

 net-to-proxy:

 external: true

 npm_default:

 driver: bridge

Then:

After the app is running for the first time, the following will happen:

1. GPG keys will be generated and saved in the data folder
2. The database will initialize with table structures
3. A default admin user will be created

Next Navigate on a web-browser to https://your_domain.tld:81

Please note the lines that need to be edited

docker-compose up -d

Initial Run

This process can take a couple of minutes depending on your machine.

This is where exposing the port 81 TCP is necessary and Temporary.

image.png

Proxy NGINX Management Dashboard

Now, that NGINX Proxy Manager is running, we can navigate to the portainer folder ~/portainer
and start portainer with:

next, run:

find portainer's IP address by running:

or

Here is an Example output:

Default Administrator User

Email: admin@example.com

Password: changeme

Immediately after logging in with this default user you will be asked to modify your details
and change your password.

Deploy Portainer

docker-compose up -d

docker ps -a

This command is useful to see all running docker containers, the container's ID and
container's open ports to the Docker host.

docker inspect --format='{{.NetworkSettings.IPAddress}}' <CONTAINER ID>

docker inspect <CONTAINER ID>

https://book.msls.tech/uploads/images/gallery/2023-10/yzKimage.png

Code example

ubuntu@instance-20231025-1926:~$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED

STATUS

PORTS

 NAMES

91ba49cd0990 lscr.io/linuxserver/bookstack "/init" 27 hours ago Up 27

hours 443/tcp, 0.0.0.0:6875->80/tcp, :::6875-

>80/tcp bookstack

60a49a71795a lscr.io/linuxserver/mariadb "/init" 27 hours ago Up 27

hours

3306/tcp

 bookstack_db

f756a302bcbd jc21/nginx-proxy-manager:latest "/init" 27 hours ago Up 27

hours 0.0.0.0:80-81->80-81/tcp, :::80-81->80-81/tcp, 0.0.0.0:443->443/tcp, :::443-

>443/tcp npm-app-1

1ed7856bd307 jc21/mariadb-aria:latest "/scripts/run.sh" 27 hours ago Up 27

hours

3306/tcp

 npm-db-1

ddccc9f35392 portainer/portainer-ce:latest "/portainer" 2 days ago Up 29

hours 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp, 0.0.0.0:9443->9443/tcp, :::9443-

>9443/tcp, 9000/tcp portainer

ubuntu@instance-20231025-1926:~$ docker inspect ddccc9f35392

[

 {

 "Id": "ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55c7",

 "Created": "2023-10-26T03:21:27.100878836Z",

 "Path": "/portainer",

 "Args": [],

 "State": {

 "Status": "running",

 "Running": true,

 "Paused": false,

 "Restarting": false,

 "OOMKilled": false,

 "Dead": false,

 "Pid": 7701,

 "ExitCode": 0,

 "Error": "",

 "StartedAt": "2023-10-27T15:40:38.580190785Z",

 "FinishedAt": "2023-10-27T15:40:37.763361341Z"

 },

 "Image":

"sha256:ecc519e8696aa56565c7b34ea94ae31d25325ebdb4d91077c30d6b9f757ae7cd",

 "ResolvConfPath":

"/var/lib/docker/containers/ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55

c7/resolv.conf",

 "HostnamePath":

"/var/lib/docker/containers/ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55

c7/hostname",

 "HostsPath":

"/var/lib/docker/containers/ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55

c7/hosts",

 "LogPath":

"/var/lib/docker/containers/ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55

c7/ddccc9f35392eed4e829f7cf0b3d17e79a9af5a4eb57232306ab10355cfd55c7-json.log",

 "Name": "/portainer",

 "RestartCount": 0,

 "Driver": "overlay2",

 "Platform": "linux",

 "MountLabel": "",

 "ProcessLabel": "",

 "AppArmorProfile": "docker-default",

 "ExecIDs": null,

 "HostConfig": {

 "Binds": [

 "/var/run/docker.sock:/var/run/docker.sock",

 "portainer_data:/data"

],

 "ContainerIDFile": "",

 "LogConfig": {

 "Type": "json-file",

 "Config": {}

 },

 "NetworkMode": "default",

 "PortBindings": {

 "8000/tcp": [

 {

 "HostIp": "",

 "HostPort": "8000"

 }

],

 "9443/tcp": [

 {

 "HostIp": "",

 "HostPort": "9443"

 }

]

 },

 "RestartPolicy": {

 "Name": "always",

 "MaximumRetryCount": 0

 },

 "AutoRemove": false,

 "VolumeDriver": "",

 "VolumesFrom": null,

 "ConsoleSize": [

 83,

 205

],

 "CapAdd": null,

 "CapDrop": null,

 "CgroupnsMode": "private",

 "Dns": [],

 "DnsOptions": [],

 "DnsSearch": [],

 "ExtraHosts": null,

 "GroupAdd": null,

 "IpcMode": "private",

 "Cgroup": "",

 "Links": null,

 "OomScoreAdj": 0,

 "PidMode": "",

 "Privileged": false,

 "PublishAllPorts": false,

 "ReadonlyRootfs": false,

 "SecurityOpt": null,

 "UTSMode": "",

 "UsernsMode": "",

 "ShmSize": 67108864,

 "Runtime": "runc",

 "Isolation": "",

 "CpuShares": 0,

 "Memory": 0,

 "NanoCpus": 0,

 "CgroupParent": "",

 "BlkioWeight": 0,

 "BlkioWeightDevice": [],

 "BlkioDeviceReadBps": [],

 "BlkioDeviceWriteBps": [],

 "BlkioDeviceReadIOps": [],

 "BlkioDeviceWriteIOps": [],

 "CpuPeriod": 0,

 "CpuQuota": 0,

 "CpuRealtimePeriod": 0,

 "CpuRealtimeRuntime": 0,

 "CpusetCpus": "",

 "CpusetMems": "",

 "Devices": [],

 "DeviceCgroupRules": null,

 "DeviceRequests": null,

 "MemoryReservation": 0,

 "MemorySwap": 0,

 "MemorySwappiness": null,

 "OomKillDisable": null,

 "PidsLimit": null,

 "Ulimits": null,

 "CpuCount": 0,

 "CpuPercent": 0,

 "IOMaximumIOps": 0,

 "IOMaximumBandwidth": 0,

 "MaskedPaths": [

 "/proc/asound",

 "/proc/acpi",

 "/proc/kcore",

 "/proc/keys",

 "/proc/latency_stats",

 "/proc/timer_list",

 "/proc/timer_stats",

 "/proc/sched_debug",

 "/proc/scsi",

 "/sys/firmware"

],

 "ReadonlyPaths": [

 "/proc/bus",

 "/proc/fs",

 "/proc/irq",

 "/proc/sys",

 "/proc/sysrq-trigger"

]

 },

 "GraphDriver": {

 "Data": {

 "LowerDir":

"/var/lib/docker/overlay2/6c52adb809a69f5cd0943b6e0783b0765f0a2e16cb8e44f5929a04fa38610d03

-

init/diff:/var/lib/docker/overlay2/c91f7fecf896c5c66a30b63d79aaf79127d7d1676ce0c56e9b88b63

f4e14bbb3/diff:/var/lib/docker/overlay2/6ca723844f37bba15380d5f7ee1f92b6370960933e95e8f12c

18cb0695263b3e/diff:/var/lib/docker/overlay2/dbfe93b7499b1686e55cd83ee1c6a3d994452e3e8e082

fa6c812c68f048ace8e/diff:/var/lib/docker/overlay2/c63d3db485f14dc788088a1f548f973ec867f68f

39c36ff587b069f89c346429/diff:/var/lib/docker/overlay2/fd595bcd1e7587be951eb9f4125b451669a

139441fc927f87ededd3f2fda02a7/diff:/var/lib/docker/overlay2/de72a959af4301fbfd1bb57a3b5046

54551de204ccd208c0849b8e6f632ec6db/diff:/var/lib/docker/overlay2/656ed3a41d736d4e22245ff7c

5a7e702d8c56a8c248c61abd8d7cb9a0801042c/diff:/var/lib/docker/overlay2/a44742a1ea16001b049e

a1d135856a4a5c757a165c4decac6cb8078aac42e2ac/diff:/var/lib/docker/overlay2/a0e0f2c89d00e6f

c95f73869f237933eef4b9f126119cec0c7b8f14b1a5fd57d/diff:/var/lib/docker/overlay2/08b663333a

2880aff2a507afd630f680362f60eb7d581045845dac6354440943/diff:/var/lib/docker/overlay2/10703

6274e659999f78fef4379be3bcc4e50107c5fbd030e27757a1b4d78a836/diff",

 "MergedDir":

"/var/lib/docker/overlay2/6c52adb809a69f5cd0943b6e0783b0765f0a2e16cb8e44f5929a04fa38610d03

/merged",

 "UpperDir":

"/var/lib/docker/overlay2/6c52adb809a69f5cd0943b6e0783b0765f0a2e16cb8e44f5929a04fa38610d03

/diff",

 "WorkDir":

"/var/lib/docker/overlay2/6c52adb809a69f5cd0943b6e0783b0765f0a2e16cb8e44f5929a04fa38610d03

/work"

 },

 "Name": "overlay2"

 },

 "Mounts": [

 {

 "Type": "volume",

 "Name": "portainer_data",

 "Source": "/var/lib/docker/volumes/portainer_data/_data",

 "Destination": "/data",

 "Driver": "local",

 "Mode": "z",

 "RW": true,

 "Propagation": ""

 },

 {

 "Type": "bind",

 "Source": "/var/run/docker.sock",

 "Destination": "/var/run/docker.sock",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 }

],

 "Config": {

 "Hostname": "ddccc9f35392",

 "Domainname": "",

 "User": "",

 "AttachStdin": false,

 "AttachStdout": false,

 "AttachStderr": false,

 "ExposedPorts": {

 "8000/tcp": {},

 "9000/tcp": {},

 "9443/tcp": {}

 },

 "Tty": false,

 "OpenStdin": false,

 "StdinOnce": false,

 "Env": [

 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"

],

 "Cmd": null,

 "Image": "portainer/portainer-ce:latest",

 "Volumes": {

 "/data": {}

 },

 "WorkingDir": "/",

 "Entrypoint": [

 "/portainer"

],

 "OnBuild": null,

 "Labels": {

 "com.docker.desktop.extension.api.version": ">= 0.2.2",

 "com.docker.desktop.extension.icon": "https://portainer-io-

assets.sfo2.cdn.digitaloceanspaces.com/logos/portainer.png",

 "com.docker.extension.additional-urls":

"[{\"title\":\"Website\",\"url\":\"https://www.portainer.io?utm_campaign=DockerCon&utm_sou

rce=DockerDesktop\"},{\"title\":\"Documentation\",\"url\":\"https://docs.portainer.io\"},{

\"title\":\"Support\",\"url\":\"https://join.slack.com/t/portainer/shared_invite/zt-

txh3ljab-52QHTyjCqbe5RibC2lcjKA\"}]",

 "com.docker.extension.detailed-description": "<p data-renderer-start-

pos=\"226\">Portainer’s Docker Desktop extension gives you access to all of

Portainer’s rich management functionality within your docker desktop

experience.</p><h2 data-renderer-start-pos=\"374\">With Portainer you can:</h2>See

all your running containersEasily view all of your container logsConsole

into containersEasily deploy your code into containers using a simple

formTurn your YAML into custom templates for easy reuse<h2 data-

renderer-start-pos=\"660\">About Portainer </h2><p data-renderer-start-

pos=\"680\">Portainer is the worlds’ most popular universal container management

platform with more than 650,000 active monthly users. Portainer can be used to manage

Docker Standalone, Kubernetes, Docker Swarm and Nomad environments through a single common

interface. It includes a simple GitOps automation engine and a Kube API. </p><p data-

renderer-start-pos=\"1006\">Portainer Business Edition is our fully supported commercial

grade product for business-wide use. It includes all the functionality that businesses

need to manage containers at scale. Visit <a class=\"sc-jKJlTe dPfAtb\"

href=\"http://portainer.io/\" title=\"http://Portainer.io\" data-renderer-

mark=\"true\">Portainer.io to learn more about Portainer Business and <a class=\"sc-

jKJlTe dPfAtb\" href=\"http://portainer.io/take-

3?utm_campaign=DockerCon&utm_source=Docker%20Desktop\"

title=\"http://portainer.io/take-

3?utm_campaign=DockerCon&utm_source=Docker%20Desktop\" data-renderer-mark=\"true\">get

3 free nodes.</p>",

 "com.docker.extension.publisher-url": "https://www.portainer.io",

 "com.docker.extension.screenshots": "[{\"alt\": \"screenshot one\",

\"url\": \"https://portainer-io-assets.sfo2.digitaloceanspaces.com/screenshots/docker-

extension-1.png\"},{\"alt\": \"screenshot two\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-2.png\"},{\"alt\":

\"screenshot three\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-3.png\"},{\"alt\":

\"screenshot four\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-4.png\"},{\"alt\":

\"screenshot five\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-5.png\"},{\"alt\":

\"screenshot six\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-6.png\"},{\"alt\":

\"screenshot seven\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-7.png\"},{\"alt\":

\"screenshot eight\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-8.png\"},{\"alt\":

\"screenshot nine\", \"url\": \"https://portainer-io-

assets.sfo2.digitaloceanspaces.com/screenshots/docker-extension-9.png\"}]",

 "io.portainer.server": "true",

 "org.opencontainers.image.description": "Docker container management made

simple, with the world’s most popular GUI-based container management platform.",

 "org.opencontainers.image.title": "Portainer",

 "org.opencontainers.image.vendor": "Portainer.io"

 }

 },

 "NetworkSettings": {

 "Bridge": "",

 "SandboxID":

"043d93a4ae7e151ea78b088376579e29e7b0efe33dd961cffba0307c642a04ca",

 "HairpinMode": false,

 "LinkLocalIPv6Address": "",

 "LinkLocalIPv6PrefixLen": 0,

 "Ports": {

 "8000/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "8000"

 },

 {

 "HostIp": "::",

 "HostPort": "8000"

 }

],

 "9000/tcp": null,

 "9443/tcp": [

 {

 "HostIp": "0.0.0.0",

 "HostPort": "9443"

 },

 {

 "HostIp": "::",

 "HostPort": "9443"

 }

]

 },

 "SandboxKey": "/var/run/docker/netns/043d93a4ae7e",

 "SecondaryIPAddresses": null,

 "SecondaryIPv6Addresses": null,

 "EndpointID":

"6357a139fd6b5f3429a595294a79ee409b1d45c360e0c3a71753c6e2986b2370",

 "Gateway": "172.17.0.1",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "MacAddress": "02:42:ac:11:00:02",

 "Networks": {

 "bridge": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": null,

 "NetworkID":

"bbea4213fff37a9904b60d7e2699721e1311e11f770e2095288875175cfdb533",

 "EndpointID":

"6357a139fd6b5f3429a595294a79ee409b1d45c360e0c3a71753c6e2986b2370",

 "Gateway": "172.17.0.1",

 "IPAddress": "172.17.0.2",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:11:00:02",

 "DriverOpts": null

 },

 "towne-net": {

 "IPAMConfig": null,

 "Links": null,

 "Aliases": [

 "ddccc9f35392"

],

 "NetworkID":

"24fba8d25afa8fbe7efec42df03de1844cc72197ed22bfa137c6120cffc2c3db",

 "EndpointID":

"e7501abfa77e30abc66313c1e2c25eef4cf2f5c6d73baf5ed5107d03d312a6c8",

 "Gateway": "172.18.0.1",

 "IPAddress": "172.18.0.4",

 "IPPrefixLen": 16,

 "IPv6Gateway": "",

 "GlobalIPv6Address": "",

 "GlobalIPv6PrefixLen": 0,

 "MacAddress": "02:42:ac:12:00:04",

 "DriverOpts": null

 }

 }

 }

 }

]

ubuntu@instance-20231025-1926:~$

The above is an example. This command gives a lot of information. Look Carefully for the
"IPV4Address"; line.

image.png

With your service running, return to the Nginx Proxy Manager interface. There, add a proxy host for
the service, creating a reverse proxy that forwards traffic from the domain to the service.

npm-1.png

image.png

Navigate to the Proxy Hosts page. Get there either using the Proxy Hosts button from
the Dashboard or via the Hosts > Proxy Hosts option from the top menu bar.
Click the Add Proxy Host button. Complete the form that displays as follows:

Enter the domain name to be used for your service in the Domain Names field.
Set the Scheme to https. This refers to the scheme used by Nginx to access the
service, not the scheme used for the proxy itself. A later step adds SSL encryption to
the proxy.
Enter the service address in the Forward Hostname/IP field. For this case
127.0.01.
Enter the local-docker address from which the proxy manager could access the
service.
Enter the service port in the Forward Port field. Following the configuration for
NGiNx used in this tutorial, that port is 81.
Toggle on the Block Common Exploits, Cache Assets, Websockets Support
options as this is generally a nice feature to have.
Leave the remaining fields at their defaults.

image.png

Proxy NPM's Management Interface

https://book.msls.tech/uploads/images/gallery/2023-10/IqTimage.png
https://book.msls.tech/uploads/images/gallery/2023-10/npm-1.png
https://book.msls.tech/uploads/images/gallery/2023-10/80wimage.png
https://book.msls.tech/uploads/images/gallery/2023-10/mRNimage.png

Before saving the configuration, navigate to the SSL tab and complete the form as
follows:

Select Request a new SSL Certificate from the SSL Certificate drop down.
Toggle on the Force SSL option to ensure HTTPS is used, encrypting traffic to and
from the service.
Enter an email address for the Let’s Encrypt certificate process. Let’s Encrypt uses
this to alert you when the certificate needs to be renewed.
Select the I Agree toggle after reading the terms of service for Let’s Encrypt.
Leave the remaining fields at their defaults.

Adding an SSL certificate to a proxy host in the Nginx Proxy Manager
Select Save to complete the proxy host setup.

Your reverse proxy for the NPM, s Management UI service is now in place. Navigate to your chosen
domain to see it in action.

Do the same process to Portaier's Management interface by entering portainer's IP address and
port 9443. Don't forget to set the scheme to HTTPS.

This process is rinse-and-repeat for most of the App/containers you will deploy. Below we will make
available the docker-compose.yaml files for all the stacks.

Use Bookstack's docker-compose.yml supplied below, to deploy bookstack or any other container
or stack.

NGINX Proxy Manager

version: '3.8'

services:

 app:

 image: 'jc21/nginx-proxy-manager:latest'

 restart: unless-stopped

 ports:

 # These ports are in format <host-port>:<container-port>

 - '80:80' # Public HTTP Port

 - '443:443' # Public HTTPS Port

 - '81:81' # Admin Web Port

 # Add any other Stream port you want to expose

 # - '21:21' # FTP

Docker-compose.yml Files

 environment:

 # Mysql/Maria connection parameters:

 DB_MYSQL_HOST: "db"

 DB_MYSQL_PORT: 3306

 DB_MYSQL_USER: "npm"

 DB_MYSQL_PASSWORD: "npm" #change this line

 DB_MYSQL_NAME: "npm"

 # Uncomment this if IPv6 is not enabled on your host

 # DISABLE_IPV6: 'true'

 volumes:

 - ./data:/data

 - ./letsencrypt:/etc/letsencrypt

 depends_on:

 - db

 networks:

 - net-to-proxy

 - npm_default

 db:

 image: 'jc21/mariadb-aria:latest'

 restart: unless-stopped

 environment:

 MYSQL_ROOT_PASSWORD: 'npm' #change this line

 MYSQL_DATABASE: 'npm'

 MYSQL_USER: 'npm'

 MYSQL_PASSWORD: 'npm' # change this line

 volumes:

 - ./mysql:/var/lib/mysql

 networks:

 - npm_default

networks:

 net-to-proxy:

 external: true

 npm_default:

 driver: bridge

Portainer

version: "3"

services:

 portainer:

 image: portainer/portainer-ce:latest

 ports:

 - 9443:9443

 volumes:

 - data:/data

 - /var/run/docker.sock:/var/run/docker.sock

 restart: unless-stopped

 networks:

 - portainer_net

 - net-to-proxy

volumes:

 data: ./poertainer_data

networks:

 portainer_net:

 driver: bridge # This means that, this network is using the host bridge

 net-to-proxy:

 external: true # This means that, this network was created previously and is external

Bookstack

version: "2"

services:

 bookstack:

 image: lscr.io/linuxserver/bookstack

 container_name: bookstack

 environment:

 - PUID=1001

 - PGID=1001

 - APP_URL=https://your_domain.tld

 - DB_HOST=bookstack_db

 - DB_PORT=3306

 - DB_USER=bookstack

 - DB_PASS=Change_this_line

 - DB_DATABASE=bookstackapp

 volumes:

 - ./bookstack_app_data:/config

 ports:

 - 6875:80

 restart: unless-stopped

 depends_on:

 - bookstack_db

 networks:

 - bookstack_default

 - net-to-proxy

 bookstack_db:

 image: lscr.io/linuxserver/mariadb

 container_name: bookstack_db

 environment:

 - PUID=1001

 - PGID=1001

 - MYSQL_ROOT_PASSWORD=Change_this_line

 - TZ=America/New_York

 - MYSQL_DATABASE=bookstackapp

 - MYSQL_USER=bookstack

 - MYSQL_PASSWORD=Must_match_password

 volumes:

 - ./bookstack_db_data:/config

 restart: unless-stopped

 networks:

 - bookstack_default

networks:

 bookstack_default:

 driver: bridge

 net-to-proxy:

 external: true

Revision #42
Created 27 October 2023 22:41:12
Updated 27 April 2025 02:34:50

